Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtre
1.
biorxiv; 2024.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2024.03.01.582992

Résumé

mRNA vaccines have demonstrated efficacy against COVID-19. However, concerns regarding waning immunity and breakthrough infections have motivated the development of next-generation vaccines with enhanced efficacy. In this study, we investigated the impact of 4-1BB costimulation on immune responses elicited by mRNA vaccines in mice. We first vaccinated mice with an mRNA vaccine encoding the SARS-CoV-2 spike antigen like the Moderna and Pfizer-BioNTech vaccines, followed by administration of 4-1BB costimulatory antibodies at various times post-vaccination. Administering 4-1BB costimulatory antibodies during the priming phase did not enhance immune responses. However, administering 4-1BB costimulatory antibodies after 96 hours elicited a significant improvement in CD8 T cell responses, leading to enhanced protection against breakthrough infections. A similar improvement in immune responses was observed with multiple mRNA vaccines, including vaccines against common cold coronavirus, human immunodeficiency virus (HIV), and arenavirus. These findings demonstrate a time-dependent effect by 4-1BB costimulation and provide insights for developing improved mRNA vaccines.


Sujets)
COVID-19 , Douleur paroxystique , Infections à VIH
2.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.11.03.565292

Résumé

Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.


Sujets)
COVID-19
3.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.09.06.556548

Résumé

SARS-CoV-2 variants with undetermined properties have emerged intermittently throughout the COVID-19 pandemic. Some variants possess unique phenotypes and mutations which allow further characterization of viral evolution and spike functions. Around 1100 cases of the B.1.640.1 variant were reported in Africa and Europe between 2021 and 2022, before the expansion of Omicron. Here, we analyzed the biological properties of a B.1.640.1 isolate and its spike. Compared to the ancestral spike, B.1.640.1 carried 14 amino acid substitutions and deletions. B.1.640.1 escaped binding by some anti-NTD and -RBD monoclonal antibodies, and neutralization by sera from convalescent and vaccinated individuals. In cell lines, infection generated large syncytia and a high cytopathic effect. In primary airway cells, B.1.640.1 replicated less than Omicron BA.1 and triggered more syncytia and cell death than other variants. The B.1.640.1 spike was highly fusogenic when expressed alone. This was mediated by two poorly characterized and infrequent mutations located in the spike S2 domain, T859N and D936H. Altogether, our results highlight the cytopathy of a hyper-fusogenic SARS-CoV-2 variant, supplanted upon the emergence of Omicron BA.1.


Sujets)
COVID-19
4.
researchsquare; 2023.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2939468.v1

Résumé

The glycosylation of IgG plays a critical role during human SARS-CoV-2, activating immune cells and inducing cytokine production. However, the role of IgM N-glycosylation has not been studied during acute viral infection in humans. In vitro evidence suggests that the glycosylation of IgM inhibits T cell proliferation and alters complement activation rates. The analysis of IgM N-glycosylation from healthy controls and hospitalized COVID-19 patients reveals that mannosylation and sialyation levels associate with COVID-19 severity. Specifically, we find increased di- and tri-sialylated glycans and altered mannose glycans in total serum IgM in severe COVID-19 patients when compared to moderate COVID-19 patients. This is in direct contrast with the decrease of sialic acid found on the serum IgG from the same cohorts. Moreover, the degree of mannosylation and sialylation correlated significantly with markers of disease severity: D-dimer, BUN, creatinine, potassium, and early anti-COVID-19 amounts of IgG, IgA, and IgM. Further, IL-16 and IL-18 cytokines showed similar trends with the amount of mannose and sialic acid present on IgM, implicating these cytokines' potential to impact glycosyltransferase expression during IgM production. When examining PBMC mRNA transcripts, we observe a decrease in the expression of Golgi mannosidases that correlates with the overall reduction in mannose processing we detect in the IgM N-glycosylation profile. Importantly, we found that IgM contains alpha-2,3 linked sialic acids in addition to the previously reported alpha-2,6 linkage. We also report that antigen-specific IgM antibody-dependent complement deposition is elevated in severe COVID-19 patients. Taken together, this work links the immunoglobulin M N-glycosylation with COVID-19 severity and highlights the need to understand the connection between IgM glycosylation and downstream immune function during human disease.


Sujets)
Maladies virales , COVID-19
5.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.01.27.525575

Résumé

How infection by a viral variant showing antigenic drift impacts a preformed mature human memory B cell (MBC) repertoire remains an open question. Here, we studied the MBC response up to 6 months after Omicron BA.1 breakthrough infection in individuals previously vaccinated with three doses of mRNA vaccine. Longitudinal analysis, using single-cell multi-omics and functional analysis of monoclonal antibodies from RBD-specific MBCs, revealed that a BA.1 breakthrough infection mostly recruited pre-existing cross-reactive MBCs with limited de novo response against BA.1-restricted epitopes. Reorganization of clonal hierarchy and new rounds of germinal center reaction, however, combined to maintain diversity and induce progressive maturation of the MBC repertoire against common Hu-1 and BA.1, but not BA.5-restricted, SARS-CoV-2 Spike RBD epitopes. Such remodeling was further associated with marked improvement in overall neutralizing breadth and potency. These findings have fundamental implications for the design of future vaccination booster strategies.


Sujets)
Syndrome respiratoire aigu sévère , Douleur paroxystique , Lymphome B
6.
- IMPACC group; Al Ozonoff; Joanna Schaenman; Naresh Doni Jayavelu; Carly E. Milliren; Carolyn S. Calfee; Charles B. Cairns; Monica Kraft; Lindsey R. Baden; Albert C. Shaw; Florian Krammer; Harm Van Bakel; Denise Esserman; Shanshan Liu; Ana Fernandez Sesma; Viviana Simon; David A. Hafler; Ruth R. Montgomery; Steven H. Kleinstein; Ofer Levy; Christian Bime; Elias K. Haddad; David J. Erle; Bali Pulendran; Kari C. Nadeau; Mark M. Davis; Catherine L. Hough; William B. Messer; Nelson I. Agudelo Higuita; Jordan P. Metcalf; Mark A. Atkinson; Scott C. Brakenridge; David B. Corry; Farrah Kheradmand; Lauren I. R. Ehrlich; Esther Melamed; Grace A. McComsey; Rafick Sekaly; Joann Diray-Arce; Bjoern Peters; Alison D. Augustine; Elaine F. Reed; Kerry McEnaney; Brenda Barton; Claudia Lentucci; Mehmet Saluvan; Ana C. Chang; Annmarie Hoch; Marisa Albert; Tanzia Shaheen; Alvin Kho; Sanya Thomas; Jing Chen; Maimouna D. Murphy; Mitchell Cooney; Scott Presnell; Leying Guan; Jeremy Gygi; Shrikant Pawar; Anderson Brito; Zain Khalil; James A. Overton; Randi Vita; Kerstin Westendorf; Cole Maguire; Slim Fourati; Ramin Salehi-Rad; Aleksandra Leligdowicz; Michael Matthay; Jonathan Singer; Kirsten N. Kangelaris; Carolyn M. Hendrickson; Matthew F. Krummel; Charles R. Langelier; Prescott G. Woodruff; Debra L. Powell; James N. Kim; Brent Simmons; I.Michael Goonewardene; Cecilia M. Smith; Mark Martens; Jarrod Mosier; Hiroki Kimura; Amy Sherman; Stephen Walsh; Nicolas Issa; Charles Dela Cruz; Shelli Farhadian; Akiko Iwasaki; Albert I. Ko; Evan J. Anderson; Aneesh Mehta; Jonathan E. Sevransky; Sharon Chinthrajah; Neera Ahuja; Angela Rogers; Maja Artandi; Sarah A.R. Siegel; Zhengchun Lu; Douglas A. Drevets; Brent R. Brown; Matthew L. Anderson; Faheem W. Guirgis; Rama V. Thyagarajan; Justin Rousseau; Dennis Wylie; Johanna Busch; Saurin Gandhi; Todd A. Triplett; George Yendewa; Olivia Giddings; Tatyana Vaysman; Bernard Khor; Adeeb Rahman; Daniel Stadlbauer; Jayeeta Dutta; Hui Xie; Seunghee Kim-Schulze; Ana Silvia Gonzalez-Reiche; Adriana van de Guchte; Holden T. Maecker; Keith Farrugia; Zenab Khan; Joanna Schaenman; Elaine F. Reed; Ramin Salehi-Rad; David Elashoff; Jenny Brook; Estefania Ramires-Sanchez; Megan Llamas; Adreanne Rivera; Claudia Perdomo; Dawn C. Ward; Clara E. Magyar; Jennifer Fulcher; Yumiko Abe-Jones; Saurabh Asthana; Alexander Beagle; Sharvari Bhide; Sidney A. Carrillo; Suzanna Chak; Rajani Ghale; Ana Gonzales; Alejandra Jauregui; Norman Jones; Tasha Lea; Deanna Lee; Raphael Lota; Jeff Milush; Viet Nguyen; Logan Pierce; Priya Prasad; Arjun Rao; Bushra Samad; Cole Shaw; Austin Sigman; Pratik Sinha; Alyssa Ward; Andrew - Willmore; Jenny Zhan; Sadeed Rashid; Nicklaus Rodriguez; Kevin Tang; Luz Torres Altamirano; Legna Betancourt; Cindy Curiel; Nicole Sutter; Maria Tercero Paz; Gayelan Tietje-Ulrich; Carolyn Leroux; Jennifer Connors; Mariana Bernui; Michele Kutzler; Carolyn Edwards; Edward Lee; Edward Lin; Brett Croen; Nicholas Semenza; Brandon Rogowski; Nataliya Melnyk; Kyra Woloszczuk; Gina Cusimano; Matthew Bell; Sara Furukawa; Renee McLin; Pamela Marrero; Julie Sheidy; George P. Tegos; Crystal Nagle; Nathan Mege; Kristen Ulring; Vicki Seyfert-Margolis; Michelle Conway; Dave Francisco; Allyson Molzahn; Heidi Erickson; Connie Cathleen Wilson; Ron Schunk; Trina Hughes; Bianca Sierra; Kinga K. Smolen; Michael Desjardins; Simon van Haren; Xhoi Mitre; Jessica Cauley; Xiofang Li; Alexandra Tong; Bethany Evans; Christina Montesano; Jose Humberto Licona; Jonathan Krauss; Jun Bai Park Chang; Natalie Izaguirre; Omkar Chaudhary; Andreas Coppi; John Fournier; Subhasis Mohanty; M. Catherine Muenker; Allison Nelson; Khadir Raddassi; Michael Rainone; William Ruff; Syim Salahuddin; Wade L. Schulz; Pavithra Vijayakumar; Haowei Wang; Elsio Wunder Jr.; H. Patrick Young; Yujiao Zhao; Miti Saksena; Deena Altman; Erna Kojic; Komal Srivastava; Lily Q. Eaker; Maria Carolina Bermudez; Katherine F. Beach; Levy A. Sominsky; Arman Azad; Juan Manuel Carreno; Gagandeep Singh; Ariel Raskin; Johnstone Tcheou; Dominika Bielak; Hisaaki Kawabata; Lubbertus CF Mulder; Giulio Kleiner; Laurel Bristow; Laila Hussaini; Kieffer Hellmeister; Hady Samaha; Andrew Cheng; Christine Spainhour; Erin M. Scherer; Brandi Johnson; Amer Bechnak; Caroline R. Ciric; Lauren Hewitt; Bernadine Panganiban; Chistopher Huerta; Jacob Usher; Erin Carter; Nina Mcnair; Susan Pereira Ribeiro; Alexandra S. Lee; Evan Do; Andrea Fernandes; Monali Manohar; Thomas Hagan; Catherine Blish; Hena Naz Din; Jonasel Roque; Samuel S. Yang; Amanda E. Brunton; Peter E. Sullivan; Matthew Strnad; Zoe L. Lyski; Felicity J. Coulter; John L. Booth; Lauren A. Sinko; Lyle Moldawer; Brittany Borrensen; Brittney Roth-Manning; Li-Zhen Song; Ebony Nelson; Megan Lewis-Smith; Jacob Smith; Pablo Guaman Tipan; Nadia Siles; Sam Bazzi; Janelle Geltman; Kerin Hurley; Giovanni Gabriele; Scott Sieg; Matthew C. Altman; Patrice M. Becker; Nadine Rouphael.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.07.02.22273396

Résumé

Background: Better understanding of the association between characteristics of patients hospital-ized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. Methods: Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1,164 patients from 20 hospitals across the United States. Disease severi-ty was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multi-variable logistic regression was performed. Findings: The median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsuper-vised clustering of ordinal score over time revealed distinct disease course trajectories. Risk fac-tors associated with prolonged hospitalization or death by day 28 included age [≥] 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63- 4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) hav-ing at least one symptom consistent with PASC, most commonly dyspnea (56% among symp-tomatic patients). Female sex was the only associated risk factor for PASC. Interpretation: Integration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. Funding: NIH


Sujets)
COVID-19 , Lymphopénie , Dyspnée , Insuffisance respiratoire
7.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1816052.v1

Résumé

Infection with SARS-CoV-2 variant Omicron is considered to be less severe than infection with variant Delta, with a rarer occurrence of severe disease requiring intensive care. However, a substantial number of patients infected with variant Omicron still experienced severe COVID-19. Little information is available on comorbid factors, clinical conditions and specific viral mutational patterns associated with the severity of variant Omicron infection. In this multicenter prospective cohort study, patients consecutively admitted for severe COVID-19 in 20 participating intensive care units in France between December 7th 2021 and May 1st 2022 were included. Among 259 patients for whom SARS-CoV-2 variant lineage was determined, we show that the clinical phenotype of patients infected with variant Omicron (n = 148) was different from that in those infected with variant Delta (n = 111). We observed no significant relationship between Delta and Omicron variant lineages/sublineages and 28-day mortality (adjusted odds ratio [95% confidence interval] = 0.68 [0.35–1.32]; p = 0.253). Among Omicron-infected patients, 43.2% were immunocompromised, most of whom had received two doses of vaccine or more (85.9%) but displayed a poor humoral response to vaccination (mean difference in serum anti-spike IgG antibody titers between vaccinated and non-vaccinated immunocompromised patients: 1078 BAU/mL [-319.4; 2475.0]; p = 0.160). The mortality rate of immunocompromised patients infected with variant Omicron was significantly higher than that of non-immunocompromised patients (46.9% vs 26.2%; p = 0.009). In patients infected with variant Omicron, there was no association between specific sublineages (BA.1/BA.1.1 (n = 109) and BA.2 (n = 21)) or any viral genome polymorphisms or mutational profile and the 28-day mortality.


Sujets)
COVID-19
8.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1502293.v1

Résumé

Recombination is a crucial process in the evolution of many organisms. Although the evolutionary reasons behind its occurrence in RNA viruses are debated, this phenomenon has been associated with major epidemiological events such as virus host range expansion, antigenic shift or variation in virulence 1,2, and this process occurs frequently in positive strand RNA viruses such as coronaviruses. The SARS-CoV-2 pandemic has been associated with the repeated emergence of variants of concern presenting increased transmissibility, severity or immune escape 3. The recent extensive circulation of Delta worldwide and its subsequent replacement by viruses of the Omicron lineage 4 (BA.1 then BA.2), have created conditions for genetic exchanges between viruses with both genetic diversity and phenotypic specificities 5-7. Here we report the identification and in vitro and in vivo characterization of a Delta-Omicron recombinant in Europe. This recombinant exhibits immune escape properties similar to Omicron, while its behavior in mice expressing the human ACE2 receptor is more similar to Delta. This recombinant provides a unique and natural opportunity to better understand the genotype to phenotype links in SARS-CoV-2.

9.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.01.07.475248

Résumé

SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in UK and has been detected in dozens of countries. It has since then been supplanted by the Omicron variant. AY.4.2 displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain (NTD) of the spike when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. Here, we analyzed the fusogenicity of the AY.4.2 spike and the sensitivity of an authentic AY.4.2 isolate to neutralizing antibodies. The AY.4.2 spike exhibited similar fusogenicity and binding to ACE2 than Delta. The sensitivity of infectious AY.4.2 to a panel of monoclonal neutralizing antibodies was similar to Delta, except for the anti-RBD Imdevimab, which showed incomplete neutralization. Sensitivity of AY.4.2 to sera from individuals having received two or three doses of Pfizer or two doses of AstraZeneca vaccines was reduced by 1.7 to 2.1 fold, when compared to Delta. Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The temporary spread of AY.4.2 was not associated with major changes in spike function but rather to a partially reduced neutralization sensitivity.

10.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1229021.v1

Résumé

Background: SARS-CoV-2 variant of concern (VOC) α spread worldwide, including in France, at the beginning of 2021. This variant was suggested to be associated with a higher risk of mortality than other variants. Little information is available in the subset of patients with severe disease admitted in the intensive care unit (ICU). We aimed to characterize the genetic diversity of SARS-CoV-2 variants isolated from patients with severe COVID-19 in order to unravel the relationships between specific viral mutations/mutational patterns and clinical outcomes. Methods: : Prospective multicentre observational cohort study. Patients aged ≥18 years admitted in 11 ICUs from Great Paris area hospitals between October 1, 2020, and May 30, 2021 (before the introduction of VOC δ (B.617.2) in France) for acute respiratory failure (SpO2≤90% and need for supplemental oxygen or ventilator support) were included. SARS-CoV-2 infection, determined by RT-PCR testing. The primary clinical endpoint was day-28 mortality. Full-length SARS-CoV-2 genomes were sequenced by means of next-generation sequencing (Illumina COVIDSeq). Results: : 413 patients were included, 183 (44.3%) had been infected with pre-existing variants, 197 (47.7%) with variant α (B.1.1.7), and 33 (8.0%) with other variants. Patients infected with pre-existing variants were significantly older (64.9±11.9 vs 60.5±11.8 years; p=0.0005); they had significantly more frequent COPD (11.5% (n=21/183) vs 4.1% (n=8/197); p=0.009), and higher SOFA score (4 [3-8] vs 3 [2-4]; 0.0002). Day-28 mortality was not different between patients infected with pre-existing, α (B.1.1.7) or other variants (31.1% (n=57/183) vs 26.2% (n=51/197) vs 30.3% (n=10/33), respectively; p=0.550). There was no association between day-28 mortality with a specific variant or the presence of specific mutations in SARS CoV-2 genome, including 17 mutations selected in the spike protein and all 1017 non-synonymous mutations detected throughout the entire viral genome. Conclusions: : At ICU admission, patients infected with pre-existing variants had a different clinical presentation from those infected with variant α (B.1.1.7) and other variants later in the course of the pandemic, but mortality did not differ between these groups. There was no association between a specific variant or SARS CoV-2 genome mutational pattern and day-28 mortality.


Sujets)
COVID-19 , Insuffisance respiratoire
11.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.12.21.473528

Résumé

Memory B cells (MBCs) represent a second layer of immune protection against SARS-CoV-2. Whether MBCs elicited by mRNA vaccines can recognize the Omicron variant is of major concern. We used bio-layer interferometry to assess the affinity against the receptor-binding-domain (RBD) of Omicron spike of 313 naturally expressed monoclonal IgG that were previously tested for affinity and neutralization against VOC prior to Omicron. We report here that Omicron evades recognition from a larger fraction of these antibodies than any of the previous VOCs. Additionally, whereas 30% of these antibodies retained high affinity against Omicron-RBD, our analysis suggest that Omicron specifically evades antibodies displaying potent neutralizing activity against the D614G and Beta variant viruses. Further studies are warranted to understand the consequences of a lower memory B cell potency on the overall protection associated with current vaccines.


Sujets)
Lymphome B
12.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.06.17.448459

Résumé

How a previous SARS-CoV-2 infection may amplify and model the memory B cell (MBC) response elicited by mRNA vaccines was addressed by a comparative longitudinal study of two cohorts, naive individuals and disease-recovered patients, up to 2 months after vaccination. The quality of the memory response was assessed by analysis of the VDJ repertoire, affinity and neutralization against variants of concerns (VOC), using unbiased cultures of 2452 MBCs. Upon boost, the MBC pool of recovered patients selectively expanded, further matured and harbored potent neutralizers against VOC. Maturation of the MBC response in naive individuals was much less pronounced. Nevertheless, and as opposed to their weaker neutralizing serum response, half of their RBD-specific MBCs displayed high affinity towards multiple VOC and one-third retained neutralizing potency against B.1.351. Thus, repeated vaccine challenges could reduce these differences by recall of affinity-matured MBCs and allow naive vaccinees to cope efficiently with VOC.


Sujets)
COVID-19 , Lymphome B
13.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.15.21253653

Résumé

The SARS-CoV-2 pandemic has led to an unprecedented daily use of molecular RT-PCR tests. These tests are interpreted qualitatively for diagnosis, and the relevance of the test result intensity, i.e. the number of amplification cycles (Ct), is debated because of strong potential biases. We analyze a national database of tests performed on more than 2 million individuals between January and November 2020. Although we find Ct values to vary depending on the testing laboratory or the assay used, we detect strong significant trends with patient age, number of days after symptoms onset, or the state of the epidemic (the temporal reproduction number) at the time of the test. These results suggest that Ct values can be used to improve short-term predictions for epidemic surveillance.

14.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.03.05.434089

Résumé

There are concerns about neutralizing antibodies (NAb) potency against the newly emerged VOC202012/01 (UK) and 501Y.V2 (SA) SARS-CoV-2 variants in mRNA-vaccinated subjects and in recovered COVID-19 patients. We used a viral neutralization test with a strict 100% neutralizing criterion on UK and SA clinical isolates in comparison with a globally distributed D614G SARS-CoV-2 strain. In two doses BNT162b2-vaccinated healthcare workers (HCW), despite heterogeneity in neutralizing capacity against the three SARS-CoV-2 strains, most of the sera harbored at least a NAb titer [≥] 1:10 suggesting a certain humoral protection activity either on UK or SA variants. However, six months after mild forms of COVID-19, an important proportion of HCW displayed no neutralizing activity against SA strain. This result supports strong recommendations for vaccination of previously infected subjects.


Sujets)
COVID-19
15.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.11.17.385252

Résumé

Memory B cells play a fundamental role in host defenses against viruses, but to date, their role have been relatively unsettled in the context of SARS-CoV-2. We report here a longitudinal single-cell and repertoire profiling of the B cell response up to 6 months in mild and severe COVID-19 patients. Distinct SARS-CoV-2 Spike-specific activated B cell clones fueled an early antibody-secreting cell burst as well as a durable synchronous germinal center response. While highly mutated memory B cells, including preexisting cross-reactive seasonal Betacoronavirus-specific clones, were recruited early in the response, neutralizing SARS-CoV-2 RBD-specific clones accumulated with time and largely contributed to the late remarkably stable memory B-cell pool. Highlighting germinal center maturation, these cells displayed clear accumulation of somatic mutations in their variable region genes over time. Overall, these findings demonstrate that an antigen-driven activation persisted and matured up to 6 months after SARS-CoV-2 infection and may provide long-term protection.


Sujets)
COVID-19
16.
researchsquare; 2020.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-44275.v1

Résumé

Background: The goal of this study was to assess risk factors of ventilator-associated pneumonia (VAP) and invasive pulmonary aspergillosis in patients with SARS-CoV-2 infection. Methods: . We conducted a monocenter retrospective study comparing the prevalence of VAP and invasive aspergillosis between patients with COVID-19 related acute respiratory distress syndrome (C-ARDS) and those with non-SARS-CoV-2 viral ARDS (NC-ARDS). Results: . We assessed 90 C-ARDS and 82 NC-ARDS patients, who were mechanically ventilated for more than 48 hours. At ICU admission, there were significantly fewer bacterial coinfections documented in C-ARDS than in NC-ARDS: 14 (16%) vs 38 (48%), p<0.01. Conversely, significantly more patients developed at least one VAP episode in C-ARDS as compared with NC-ARDS : 58 (64%) vs. 36 (44%), p=0.007. The probability of VAP was significantly higher in C-ARDS after adjusting on death and ventilator weaning [sub-hazard ratio = 1.72 (1.14-2.52), p<0.01].The prevalence of multi-drug resistant bacteria (MDR) related VAP was significantly higher in C-ARDS than in NC-ARDS: 21 (23%) vs. 9 (11%), p=0.03. Carbapenem was more used in C-ARDS than in NC-ARDS: 48 (53%), vs 21 (26%), p<0.01. According to AspICU algorithm, there were fewer cases of putative aspergillosis in C-ARDS than in NC-ARDS [2 (2%) vs. 12 (15%), p=0.003], but there was no difference in Aspergillus colonization. Conclusions: . In this retrospective case-control study, we evidenced a higher prevalence of VAP and MDR-VAP in C-ARDS than in NC-ARDS, and a lower risk for invasive aspergillosis in the former group.


Sujets)
Infections à coronavirus , , Pneumopathie infectieuse , Pneumopathie infectieuse sous ventilation assistée , Aspergillose pulmonaire invasive , COVID-19
SÉLECTION CITATIONS
Détails de la recherche